22 Containers library [containers]

22.4 Associative containers [associative]

22.4.5 Class template multimap [multimap]

22.4.5.1 Overview [multimap.overview]

A multimap is an associative container that supports equivalent keys (possibly containing multiple copies of the same key value) and provides for fast retrieval of values of another type T based on the keys.
The multimap class supports bidirectional iterators.
A multimap meets all of the requirements of a container and of a reversible container ([container.requirements]), of an associative container ([associative.reqmts]), and of an allocator-aware container (Table 76).
A multimap also provides most operations described in [associative.reqmts] for equal keys.
This means that a multimap supports the a_­eq operations in [associative.reqmts] but not the a_­uniq operations.
For a multimap<Key,T> the key_­type is Key and the value_­type is pair<const Key,T>.
Descriptions are provided here only for operations on multimap that are not described in one of those tables or for operations where there is additional semantic information.
namespace std { template<class Key, class T, class Compare = less<Key>, class Allocator = allocator<pair<const Key, T>>> class multimap { public: // types using key_type = Key; using mapped_type = T; using value_type = pair<const Key, T>; using key_compare = Compare; using allocator_type = Allocator; using pointer = typename allocator_traits<Allocator>::pointer; using const_pointer = typename allocator_traits<Allocator>::const_pointer; using reference = value_type&; using const_reference = const value_type&; using size_type = implementation-defined; // see [container.requirements] using difference_type = implementation-defined; // see [container.requirements] using iterator = implementation-defined; // see [container.requirements] using const_iterator = implementation-defined; // see [container.requirements] using reverse_iterator = std::reverse_iterator<iterator>; using const_reverse_iterator = std::reverse_iterator<const_iterator>; using node_type = unspecified; class value_compare { friend class multimap; protected: Compare comp; value_compare(Compare c) : comp(c) { } public: bool operator()(const value_type& x, const value_type& y) const { return comp(x.first, y.first); } }; // [multimap.cons], construct/copy/destroy multimap() : multimap(Compare()) { } explicit multimap(const Compare& comp, const Allocator& = Allocator()); template<class InputIterator> multimap(InputIterator first, InputIterator last, const Compare& comp = Compare(), const Allocator& = Allocator()); multimap(const multimap& x); multimap(multimap&& x); explicit multimap(const Allocator&); multimap(const multimap&, const type_identity_t<Allocator>&); multimap(multimap&&, const type_identity_t<Allocator>&); multimap(initializer_list<value_type>, const Compare& = Compare(), const Allocator& = Allocator()); template<class InputIterator> multimap(InputIterator first, InputIterator last, const Allocator& a) : multimap(first, last, Compare(), a) { } multimap(initializer_list<value_type> il, const Allocator& a) : multimap(il, Compare(), a) { } ~multimap(); multimap& operator=(const multimap& x); multimap& operator=(multimap&& x) noexcept(allocator_traits<Allocator>::is_always_equal::value && is_nothrow_move_assignable_v<Compare>); multimap& operator=(initializer_list<value_type>); allocator_type get_allocator() const noexcept; // iterators iterator begin() noexcept; const_iterator begin() const noexcept; iterator end() noexcept; const_iterator end() const noexcept; reverse_iterator rbegin() noexcept; const_reverse_iterator rbegin() const noexcept; reverse_iterator rend() noexcept; const_reverse_iterator rend() const noexcept; const_iterator cbegin() const noexcept; const_iterator cend() const noexcept; const_reverse_iterator crbegin() const noexcept; const_reverse_iterator crend() const noexcept; // capacity [[nodiscard]] bool empty() const noexcept; size_type size() const noexcept; size_type max_size() const noexcept; // [multimap.modifiers], modifiers template<class... Args> iterator emplace(Args&&... args); template<class... Args> iterator emplace_hint(const_iterator position, Args&&... args); iterator insert(const value_type& x); iterator insert(value_type&& x); template<class P> iterator insert(P&& x); iterator insert(const_iterator position, const value_type& x); iterator insert(const_iterator position, value_type&& x); template<class P> iterator insert(const_iterator position, P&& x); template<class InputIterator> void insert(InputIterator first, InputIterator last); void insert(initializer_list<value_type>); node_type extract(const_iterator position); node_type extract(const key_type& x); iterator insert(node_type&& nh); iterator insert(const_iterator hint, node_type&& nh); iterator erase(iterator position); iterator erase(const_iterator position); size_type erase(const key_type& x); iterator erase(const_iterator first, const_iterator last); void swap(multimap&) noexcept(allocator_traits<Allocator>::is_always_equal::value && is_nothrow_swappable_v<Compare>); void clear() noexcept; template<class C2> void merge(multimap<Key, T, C2, Allocator>& source); template<class C2> void merge(multimap<Key, T, C2, Allocator>&& source); template<class C2> void merge(map<Key, T, C2, Allocator>& source); template<class C2> void merge(map<Key, T, C2, Allocator>&& source); // observers key_compare key_comp() const; value_compare value_comp() const; // map operations iterator find(const key_type& x); const_iterator find(const key_type& x) const; template<class K> iterator find(const K& x); template<class K> const_iterator find(const K& x) const; size_type count(const key_type& x) const; template<class K> size_type count(const K& x) const; bool contains(const key_type& x) const; template<class K> bool contains(const K& x) const; iterator lower_bound(const key_type& x); const_iterator lower_bound(const key_type& x) const; template<class K> iterator lower_bound(const K& x); template<class K> const_iterator lower_bound(const K& x) const; iterator upper_bound(const key_type& x); const_iterator upper_bound(const key_type& x) const; template<class K> iterator upper_bound(const K& x); template<class K> const_iterator upper_bound(const K& x) const; pair<iterator, iterator> equal_range(const key_type& x); pair<const_iterator, const_iterator> equal_range(const key_type& x) const; template<class K> pair<iterator, iterator> equal_range(const K& x); template<class K> pair<const_iterator, const_iterator> equal_range(const K& x) const; }; template<class InputIterator, class Compare = less<iter-key-type<InputIterator>>, class Allocator = allocator<iter-to-alloc-type<InputIterator>>> multimap(InputIterator, InputIterator, Compare = Compare(), Allocator = Allocator()) -> multimap<iter-key-type<InputIterator>, iter-mapped-type<InputIterator>, Compare, Allocator>; template<class Key, class T, class Compare = less<Key>, class Allocator = allocator<pair<const Key, T>>> multimap(initializer_list<pair<Key, T>>, Compare = Compare(), Allocator = Allocator()) -> multimap<Key, T, Compare, Allocator>; template<class InputIterator, class Allocator> multimap(InputIterator, InputIterator, Allocator) -> multimap<iter-key-type<InputIterator>, iter-mapped-type<InputIterator>, less<iter-key-type<InputIterator>>, Allocator>; template<class Key, class T, class Allocator> multimap(initializer_list<pair<Key, T>>, Allocator) -> multimap<Key, T, less<Key>, Allocator>; }

22.4.5.2 Constructors [multimap.cons]

explicit multimap(const Compare& comp, const Allocator& = Allocator());
Effects: Constructs an empty multimap using the specified comparison object and allocator.
Complexity: Constant.
template<class InputIterator> multimap(InputIterator first, InputIterator last, const Compare& comp = Compare(), const Allocator& = Allocator());
Effects: Constructs an empty multimap using the specified comparison object and allocator, and inserts elements from the range [first, last).
Complexity: Linear in N if the range [first, last) is already sorted using comp and otherwise , where N is last - first.

22.4.5.3 Modifiers [multimap.modifiers]

template<class P> iterator insert(P&& x); template<class P> iterator insert(const_iterator position, P&& x);
Constraints: is_­constructible_­v<value_­type, P&&> is true.
Effects: The first form is equivalent to return emplace(std​::​forward<P>(x)).
The second form is equivalent to return emplace_­hint(position, std​::​forward<P>(x)).

22.4.5.4 Erasure [multimap.erasure]

template<class Key, class T, class Compare, class Allocator, class Predicate> typename multimap<Key, T, Compare, Allocator>::size_type erase_if(multimap<Key, T, Compare, Allocator>& c, Predicate pred);
Effects: Equivalent to: auto original_size = c.size(); for (auto i = c.begin(), last = c.end(); i != last; ) { if (pred(*i)) { i = c.erase(i); } else { ++i; } } return original_size - c.size();